ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09436
63
1
v1v2 (latest)

Asymptotic normality of wavelet covariances and of multivariate wavelet Whittle estimators

17 December 2020
Irène Gannaz
ArXiv (abs)PDFHTML
Abstract

Multivariate processes with long-range dependence properties can be encountered in many fields of application. Two fundamental characteristics in such frameworks are long-range dependence parameters and correlations between component time series. We consider multivariate long-range dependent linear processes, not necessarily Gaussian. We show that the covariances between the wavelet coefficients in this setting are asymptotically Gaussian. We also study the asymptotic distributions of the estimators of the long-range dependence parameter and the long-run covariance by a wavelet-based Whittle procedure. We prove the asymptotic normality of the estimators, and we provide an explicit expression for the asymptotic covariances. An empirical illustration of this result is proposed on a real dataset of rat brain connectivity.

View on arXiv
Comments on this paper