ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09938
16
10

Can Transformers Reason About Effects of Actions?

17 December 2020
Pratyay Banerjee
Chitta Baral
Man Luo
Arindam Mitra
Kuntal Kumar Pal
Tran Cao Son
Neeraj Varshney
    LRM
    AI4CE
ArXivPDFHTML
Abstract

A recent work has shown that transformers are able to "reason" with facts and rules in a limited setting where the rules are natural language expressions of conjunctions of conditions implying a conclusion. Since this suggests that transformers may be used for reasoning with knowledge given in natural language, we do a rigorous evaluation of this with respect to a common form of knowledge and its corresponding reasoning -- the reasoning about effects of actions. Reasoning about action and change has been a top focus in the knowledge representation subfield of AI from the early days of AI and more recently it has been a highlight aspect in common sense question answering. We consider four action domains (Blocks World, Logistics, Dock-Worker-Robots and a Generic Domain) in natural language and create QA datasets that involve reasoning about the effects of actions in these domains. We investigate the ability of transformers to (a) learn to reason in these domains and (b) transfer that learning from the generic domains to the other domains.

View on arXiv
Comments on this paper