479
v1v2v3v4v5 (latest)

Reduced-Rank Tensor-on-Tensor Regression and Tensor-variate Analysis of Variance

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Abstract

Fitting regression models with many multivariate responses and covariates can be challenging, but such responses and covariates sometimes have tensor-variate structure. We extend the classical multivariate regression model to exploit such structure in two ways: first, we impose four types of low-rank tensor formats on the regression coefficients. Second, we model the errors using the tensor-variate normal distribution that imposes a Kronecker separable format on the covariance matrix. We obtain maximum likelihood estimators via block-relaxation algorithms and derive their computational complexity and asymptotic distributions. Our regression framework enables us to formulate tensor-variate analysis of variance (TANOVA) methodology. This methodology, when applied in a one-way TANOVA layout, enables us to identify cerebral regions significantly associated with the interaction of suicide attempters or non-attemptor ideators and positive-, negative- or death-connoting words in a functional Magnetic Resonance Imaging study. Another application uses three-way TANOVA on the Labeled Faces in the Wild image dataset to distinguish facial characteristics related to ethnic origin, age group and gender.

View on arXiv
Comments on this paper