ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.11067
15
26

On Relating 'Why?' and 'Why Not?' Explanations

21 December 2020
Alexey Ignatiev
Nina Narodytska
Nicholas M. Asher
João Marques-Silva
    XAI
    FAtt
    LRM
ArXivPDFHTML
Abstract

Explanations of Machine Learning (ML) models often address a 'Why?' question. Such explanations can be related with selecting feature-value pairs which are sufficient for the prediction. Recent work has investigated explanations that address a 'Why Not?' question, i.e. finding a change of feature values that guarantee a change of prediction. Given their goals, these two forms of explaining predictions of ML models appear to be mostly unrelated. However, this paper demonstrates otherwise, and establishes a rigorous formal relationship between 'Why?' and 'Why Not?' explanations. Concretely, the paper proves that, for any given instance, 'Why?' explanations are minimal hitting sets of 'Why Not?' explanations and vice-versa. Furthermore, the paper devises novel algorithms for extracting and enumerating both forms of explanations.

View on arXiv
Comments on this paper