ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14092
6
4

Model Optimization for Deep Space Exploration via Simulators and Deep Learning

28 December 2020
James Bird
Kellan Colburn
Linda R. Petzold
P. Lubin
ArXivPDFHTML
Abstract

Machine learning, and eventually true artificial intelligence techniques, are extremely important advancements in astrophysics and astronomy. We explore the application of deep learning using neural networks in order to automate the detection of astronomical bodies for future exploration missions, such as missions to search for signatures or suitability of life. The ability to acquire images, analyze them, and send back those that are important, as determined by the deep learning algorithm, is critical in bandwidth-limited applications. Our previous foundational work solidified the concept of using simulator images and deep learning in order to detect planets. Optimization of this process is of vital importance, as even a small loss in accuracy might be the difference between capturing and completely missing a possibly-habitable nearby planet. Through computer vision, deep learning, and simulators, we introduce methods that optimize the detection of exoplanets. We show that maximum achieved accuracy can hit above 98% for multiple model architectures, even with a relatively small training set.

View on arXiv
Comments on this paper