ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15128
11
64

PrivSyn: Differentially Private Data Synthesis

30 December 2020
Zhikun Zhang
Tianhao Wang
Ninghui Li
Jean Honorio
Michael Backes
Shibo He
Jiming Chen
Yang Zhang
    SyDa
ArXivPDFHTML
Abstract

In differential privacy (DP), a challenging problem is to generate synthetic datasets that efficiently capture the useful information in the private data. The synthetic dataset enables any task to be done without privacy concern and modification to existing algorithms. In this paper, we present PrivSyn, the first automatic synthetic data generation method that can handle general tabular datasets (with 100 attributes and domain size >2500>2^{500}>2500). PrivSyn is composed of a new method to automatically and privately identify correlations in the data, and a novel method to generate sample data from a dense graphic model. We extensively evaluate different methods on multiple datasets to demonstrate the performance of our method.

View on arXiv
Comments on this paper