ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15754
17
12

Limitations of Deep Neural Networks: a discussion of G. Marcus' critical appraisal of deep learning

22 December 2020
Stefanos Tsimenidis
ArXivPDFHTML
Abstract

Deep neural networks have triggered a revolution in artificial intelligence, having been applied with great results in medical imaging, semi-autonomous vehicles, ecommerce, genetics research, speech recognition, particle physics, experimental art, economic forecasting, environmental science, industrial manufacturing, and a wide variety of applications in nearly every field. This sudden success, though, may have intoxicated the research community and blinded them to the potential pitfalls of assigning deep learning a higher status than warranted. Also, research directed at alleviating the weaknesses of deep learning may seem less attractive to scientists and engineers, who focus on the low-hanging fruit of finding more and more applications for deep learning models, thus letting short-term benefits hamper long-term scientific progress. Gary Marcus wrote a paper entitled Deep Learning: A Critical Appraisal, and here we discuss Marcus' core ideas, as well as attempt a general assessment of the subject. This study examines some of the limitations of deep neural networks, with the intention of pointing towards potential paths for future research, and of clearing up some metaphysical misconceptions, held by numerous researchers, that may misdirect them.

View on arXiv
Comments on this paper