ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.00989
33
10

Fooling Object Detectors: Adversarial Attacks by Half-Neighbor Masks

4 January 2021
Yanghao Zhang
Fu Lee Wang
Wenjie Ruan
    AAML
ArXivPDFHTML
Abstract

Although there are a great number of adversarial attacks on deep learning based classifiers, how to attack object detection systems has been rarely studied. In this paper, we propose a Half-Neighbor Masked Projected Gradient Descent (HNM-PGD) based attack, which can generate strong perturbation to fool different kinds of detectors under strict constraints. We also applied the proposed HNM-PGD attack in the CIKM 2020 AnalytiCup Competition, which was ranked within the top 1% on the leaderboard. We release the code at https://github.com/YanghaoZYH/HNM-PGD.

View on arXiv
Comments on this paper