ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.01364
19
40

Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends

5 January 2021
Q. Rahman
Peter Corke
Feras Dayoub
    OOD
ArXivPDFHTML
Abstract

As deep learning continues to dominate all state-of-the-art computer vision tasks, it is increasingly becoming an essential building block for robotic perception. This raises important questions concerning the safety and reliability of learning-based perception systems. There is an established field that studies safety certification and convergence guarantees of complex software systems at design-time. However, the unknown future deployment environments of an autonomous system and the complexity of learning-based perception make the generalization of design-time verification to run-time problematic. In the face of this challenge, more attention is starting to focus on run-time monitoring of performance and reliability of perception systems with several trends emerging in the literature. This paper attempts to identify these trends and summarise the various approaches to the topic.

View on arXiv
Comments on this paper