ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.03042
21
15

Towards a Robust and Trustworthy Machine Learning System Development: An Engineering Perspective

8 January 2021
Pulei Xiong
Scott Buffett
Shahrear Iqbal
Philippe Lamontagne
M. Mamun
Heather Molyneaux
    OOD
ArXivPDFHTML
Abstract

While Machine Learning (ML) technologies are widely adopted in many mission critical fields to support intelligent decision-making, concerns remain about system resilience against ML-specific security attacks and privacy breaches as well as the trust that users have in these systems. In this article, we present our recent systematic and comprehensive survey on the state-of-the-art ML robustness and trustworthiness from a security engineering perspective, focusing on the problems in system threat analysis, design and evaluation faced in developing practical machine learning applications, in terms of robustness and user trust. Accordingly, we organize the presentation of this survey intended to facilitate the convey of the body of knowledge from this angle. We then describe a metamodel we created that represents the body of knowledge in a standard and visualized way. We further illustrate how to leverage the metamodel to guide a systematic threat analysis and security design process which extends and scales up the classic process. Finally, we propose the future research directions motivated by our findings. Our work differs itself from the existing surveys by (i) exploring the fundamental principles and best practices to support robust and trustworthy ML system development, and (ii) studying the interplay of robustness and user trust in the context of ML systems. We expect this survey provides a big picture for machine learning security practitioners.

View on arXiv
Comments on this paper