ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06130
11
2

Random and quasi-random designs in group testing

15 January 2021
J. Noonan
A. Zhigljavsky
ArXivPDFHTML
Abstract

For large classes of group testing problems, we derive lower bounds for the probability that all significant items are uniquely identified using specially constructed random designs. These bounds allow us to optimize parameters of the randomization schemes. We also suggest and numerically justify a procedure of constructing designs with better separability properties than pure random designs. We illustrate theoretical considerations with a large simulation-based study. This study indicates, in particular, that in the case of the common binary group testing, the suggested families of designs have better separability than the popular designs constructed from disjunct matrices. We also derive several asymptotic expansions and discuss the situations when the resulting approximations achieve high accuracy.

View on arXiv
Comments on this paper