ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06901
12
3

Soft Constrained Autonomous Vehicle Navigation using Gaussian Processes and Instance Segmentation

18 January 2021
B. Barbosa
N. Bhatt
A. Khajepour
Ehsan Hashemi
ArXivPDFHTML
Abstract

This paper presents a generic feature-based navigation framework for autonomous vehicles using a soft constrained Particle Filter. Selected map features, such as road and landmark locations, and vehicle states are used for designing soft constraints. After obtaining features of mapped landmarks in instance-based segmented images acquired from a monocular camera, vehicle-to-landmark distances are predicted using Gaussian Process Regression (GPR) models in a mixture of experts approach. Both mean and variance outputs of GPR models are used for implementing adaptive constraints. Experimental results confirm that the use of image segmentation features improves the vehicle-to-landmark distance prediction notably, and that the proposed soft constrained approach reliably localizes the vehicle even with reduced number of landmarks and noisy observations.

View on arXiv
Comments on this paper