ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.07295
22
0

The Surprising Positive Knowledge Transfer in Continual 3D Object Shape Reconstruction

18 January 2021
Anh Thai
Stefan Stojanov
Zixuan Huang
Isaac Rehg
James M. Rehg
    CLL
ArXivPDFHTML
Abstract

Continual learning has been extensively studied for classification tasks with methods developed to primarily avoid catastrophic forgetting, a phenomenon where earlier learned concepts are forgotten at the expense of more recent samples. In this work, we present a set of continual 3D object shape reconstruction tasks, including complete 3D shape reconstruction from different input modalities, as well as visible surface (2.5D) reconstruction which, surprisingly demonstrate positive knowledge (backward and forward) transfer when training with solely standard SGD and without additional heuristics. We provide evidence that continuously updated representation learning of single-view 3D shape reconstruction improves the performance on learned and novel categories over time. We provide a novel analysis of knowledge transfer ability by looking at the output distribution shift across sequential learning tasks. Finally, we show that the robustness of these tasks leads to the potential of having a proxy representation learning task for continual classification. The codebase, dataset and pre-trained models released with this article can be found at https://github.com/rehg-lab/CLRec

View on arXiv
Comments on this paper