ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.08734
21
55

Clairvoyant Prefetching for Distributed Machine Learning I/O

21 January 2021
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
ArXivPDFHTML
Abstract

I/O is emerging as a major bottleneck for machine learning training, especially in distributed environments. Indeed, at large scale, I/O takes as much as 85% of training time. Addressing this I/O bottleneck necessitates careful optimization, as optimal data ingestion pipelines differ between systems, and require a delicate balance between access to local storage, external filesystems, and remote nodes. We introduce NoPFS, a machine learning I/O middleware, which provides a scalable, flexible, and easy-to-use solution to the I/O bottleneck. NoPFS uses clairvoyance: Given the seed generating the random access pattern for training with SGD, it can exactly predict when and where a sample will be accessed. We combine this with an analysis of access patterns and a performance model to provide distributed caching policies that adapt to different datasets and storage hierarchies. NoPFS reduces I/O times and improves end-to-end training by up to 5.4x on the ImageNet-1k, ImageNet-22k, and CosmoFlow datasets.

View on arXiv
Comments on this paper