ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.09028
13
51

A Closer Look at Temporal Sentence Grounding in Videos: Dataset and Metric

22 January 2021
Yitian Yuan
Xiaohan Lan
Xin Wang
Long Chen
Zhi Wang
Wenwu Zhu
ArXivPDFHTML
Abstract

Temporal Sentence Grounding in Videos (TSGV), i.e., grounding a natural language sentence which indicates complex human activities in a long and untrimmed video sequence, has received unprecedented attentions over the last few years. Although each newly proposed method plausibly can achieve better performance than previous ones, current TSGV models still tend to capture the moment annotation biases and fail to take full advantage of multi-modal inputs. Even more incredibly, several extremely simple baselines without training can also achieve state-of-the-art performance. In this paper, we take a closer look at the existing evaluation protocols for TSGV, and find that both the prevailing dataset splits and evaluation metrics are the devils to cause unreliable benchmarking. To this end, we propose to re-organize two widely-used TSGV benchmarks (ActivityNet Captions and Charades-STA). Specifically, we deliberately make the ground-truth moment distribution different in the training and test splits, i.e., out-of-distribution (OOD) testing. Meanwhile, we introduce a new evaluation metric dR@n,IoU@m to calibrate the basic IoU scores by penalizing on the bias-influenced moment predictions and alleviate the inflating evaluations caused by the dataset annotation biases such as overlong ground-truth moments. Under our new evaluation protocol, we conduct extensive experiments and ablation studies on eight state-of-the-art TSGV methods. All the results demonstrate that the re-organized dataset splits and new metric can better monitor the progress in TSGV. Our reorganized datsets are available at https://github.com/yytzsy/grounding_changing_distribution.

View on arXiv
Comments on this paper