ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.09642
113
35
v1v2 (latest)

Image Compression with Encoder-Decoder Matched Semantic Segmentation

24 January 2021
Hoang Man Trinh
Jinjia Zhou
Yibo Fan
ArXiv (abs)PDFHTML
Abstract

In recent years, layered image compression is demonstrated to be a promising direction, which encodes a compact representation of the input image and apply an up-sampling network to reconstruct the image. To further improve the quality of the reconstructed image, some works transmit the semantic segment together with the compressed image data. Consequently, the compression ratio is also decreased because extra bits are required for transmitting the semantic segment. To solve this problem, we propose a new layered image compression framework with encoder-decoder matched semantic segmentation (EDMS). And then, followed by the semantic segmentation, a special convolution neural network is used to enhance the inaccurate semantic segment. As a result, the accurate semantic segment can be obtained in the decoder without requiring extra bits. The experimental results show that the proposed EDMS framework can get up to 35.31% BD-rate reduction over the HEVC-based (BPG) codec, 5% bitrate, and 24% encoding time saving compare to the state-of-the-art semantic-based image codec.

View on arXiv
Comments on this paper