ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10502
11
1

Model-agnostic interpretation by visualization of feature perturbations

26 January 2021
Wilson E. Marcílio-Jr
D. M. Eler
Fabricio A. Breve
    AAML
ArXivPDFHTML
Abstract

Interpretation of machine learning models has become one of the most important research topics due to the necessity of maintaining control and avoiding bias in these algorithms. Since many machine learning algorithms are published every day, there is a need for novel model-agnostic interpretation approaches that could be used to interpret a great variety of algorithms. Thus, one advantageous way to interpret machine learning models is to feed different input data to understand the changes in the prediction. Using such an approach, practitioners can define relations among data patterns and a model's decision. This work proposes a model-agnostic interpretation approach that uses visualization of feature perturbations induced by the PSO algorithm. We validate our approach on publicly available datasets, showing the capability to enhance the interpretation of different classifiers while yielding very stable results compared with state-of-the-art algorithms.

View on arXiv
Comments on this paper