ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10572
69
37
v1v2 (latest)

Transparent Contribution Evaluation for Secure Federated Learning on Blockchain

26 January 2021
Shuaicheng Ma
Yang Cao
L. Xiong
    FedML
ArXiv (abs)PDFHTML
Abstract

Federated Learning is a promising machine learning paradigm when multiple parties collaborate to build a high-quality machine learning model. Nonetheless, these parties are only willing to participate when given enough incentives, such as a fair reward based on their contributions. Many studies explored Shapley value based methods to evaluate each party's contribution to the learned model. However, they commonly assume a trusted server to train the model and evaluate the data owners' model contributions, which lacks transparency and may hinder the success of federated learning in practice. In this work, we propose a blockchain-based federated learning framework and a protocol to transparently evaluate each participants' contribution. Our framework protects all parties' privacy in the model building phrase and transparently evaluates contributions based on the model updates. The experiment with the handwritten digits dataset demonstrates that the proposed method can effectively evaluate the contributions.

View on arXiv
Comments on this paper