27
10

Exact and Approximate Heterogeneous Bayesian Decentralized Data Fusion

Abstract

In Bayesian peer-to-peer decentralized data fusion, the underlying distributions held locally by autonomous agents are frequently assumed to be over the same set of variables (homogeneous). This requires each agent to process and communicate the full global joint distribution, and thus leads to high computation and communication costs irrespective of relevancy to specific local objectives. This work studies a family of heterogeneous decentralized fusion problems, where the set of problems in which either the communicated or the processed distributions describe different, but overlapping, states of interest that are subsets of a larger full global joint state is considered. We exploit the conditional independence structure of such problems and provide a rigorous derivation for a family of exact and approximate heterogeneous conditionally factorized channel filter methods. We further extend existing methods for approximate conservative filtering and decentralized fusion in heterogeneous dynamic problems. Numerical examples show more than 99.5\% potential communication reduction for heterogeneous channel filter fusion, and a multi-target tracking simulation shows that these methods provide consistent estimates.

View on arXiv
Comments on this paper