ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.00047
10
8

Model Adaptation for Image Reconstruction using Generalized Stein's Unbiased Risk Estimator

29 January 2021
H. Aggarwal
M. Jacob
ArXivPDFHTML
Abstract

Deep learning image reconstruction algorithms often suffer from model mismatches when the acquisition scheme differs significantly from the forward model used during training. We introduce a Generalized Stein's Unbiased Risk Estimate (GSURE) loss metric to adapt the network to the measured k-space data and minimize model misfit impact. Unlike current methods that rely on the mean square error in kspace, the proposed metric accounts for noise in the measurements. This makes the approach less vulnerable to overfitting, thus offering improved reconstruction quality compared to schemes that rely on mean-square error. This approach may be useful to rapidly adapt pre-trained models to new acquisition settings (e.g., multi-site) and different contrasts than training data

View on arXiv
Comments on this paper