21
29

Adversarially learning disentangled speech representations for robust multi-factor voice conversion

Jie Wang
Jingbei Li
Xintao Zhao
Zhiyong Wu
Shiyin Kang
H. Meng
Abstract

Factorizing speech as disentangled speech representations is vital to achieve highly controllable style transfer in voice conversion (VC). Conventional speech representation learning methods in VC only factorize speech as speaker and content, lacking controllability on other prosody-related factors. State-of-the-art speech representation learning methods for more speechfactors are using primary disentangle algorithms such as random resampling and ad-hoc bottleneck layer size adjustment,which however is hard to ensure robust speech representationdisentanglement. To increase the robustness of highly controllable style transfer on multiple factors in VC, we propose a disentangled speech representation learning framework based on adversarial learning. Four speech representations characterizing content, timbre, rhythm and pitch are extracted, and further disentangled by an adversarial Mask-And-Predict (MAP)network inspired by BERT. The adversarial network is used tominimize the correlations between the speech representations,by randomly masking and predicting one of the representationsfrom the others. Experimental results show that the proposedframework significantly improves the robustness of VC on multiple factors by increasing the speech quality MOS from 2.79 to3.30 and decreasing the MCD from 3.89 to 3.58.

View on arXiv
Comments on this paper