ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.00417
24
6

Priority-based Post-Processing Bias Mitigation for Individual and Group Fairness

31 January 2021
P. Lohia
ArXivPDFHTML
Abstract

Previous post-processing bias mitigation algorithms on both group and individual fairness don't work on regression models and datasets with multi-class numerical labels. We propose a priority-based post-processing bias mitigation on both group and individual fairness with the notion that similar individuals should get similar outcomes irrespective of socio-economic factors and more the unfairness, more the injustice. We establish this proposition by a case study on tariff allotment in a smart grid. Our novel framework establishes it by using a user segmentation algorithm to capture the consumption strategy better. This process ensures priority-based fair pricing for group and individual facing the maximum injustice. It upholds the notion of fair tariff allotment to the entire population taken into consideration without modifying the in-built process for tariff calculation. We also validate our method and show superior performance to previous work on a real-world dataset in criminal sentencing.

View on arXiv
Comments on this paper