ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.00725
31
10

Generalized non-stationary bandits

1 February 2021
Anne Gael Manegueu
Alexandra Carpentier
Yi Yu
ArXivPDFHTML
Abstract

In this paper, we study a non-stationary stochastic bandit problem, which generalizes the switching bandit problem. On top of the switching bandit problem (\textbf{Case a}), we are interested in three concrete examples: (\textbf{b}) the means of the arms are local polynomials, (\textbf{c}) the means of the arms are locally smooth, and (\textbf{d}) the gaps of the arms have a bounded number of inflexion points and where the highest arm mean cannot vary too much in a short range. These three settings are very different, but have in common the following: (i) the number of similarly-sized level sets of the logarithm of the gaps can be controlled, and (ii) the highest mean has a limited number of abrupt changes, and otherwise has limited variations. We propose a single algorithm in this general setting, that in particular solves in an efficient and unified way the four problems (a)-(d) mentioned.

View on arXiv
Comments on this paper