ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.01381
11
11

Generalized Facial Manipulation Detection with Edge Region Feature Extraction

2 February 2021
Dong-Keon Kim
Kwangsu Kim
    AAML
    CVBM
ArXivPDFHTML
Abstract

This paper presents a generalized and robust face manipulation detection method based on the edge region features appearing in images. Most contemporary face synthesis processes include color awkwardness reduction but damage the natural fingerprint in the edge region. In addition, these color correction processes do not proceed in the non-face background region. We also observe that the synthesis process does not consider the natural properties of the image appearing in the time domain. Considering these observations, we propose a facial forensic framework that utilizes pixel-level color features appearing in the edge region of the whole image. Furthermore, our framework includes a 3D-CNN classification model that interprets the extracted color features spatially and temporally. Unlike other existing studies, we conduct authenticity determination by considering all features extracted from multiple frames within one video. Through extensive experiments, including real-world scenarios to evaluate generalized detection ability, we show that our framework outperforms state-of-the-art facial manipulation detection technologies in terms of accuracy and robustness.

View on arXiv
Comments on this paper