122

Stronger Separation of Analog Neuron Hierarchy by Deterministic Context-Free Languages

Neurocomputing (Neurocomputing), 2021
Abstract

We analyze the computational power of discrete-time recurrent neural networks (NNs) with the saturated-linear activation function within the Chomsky hierarchy. This model restricted to integer weights coincides with binary-state NNs with the Heaviside activation function, which are equivalent to finite automata (Chomsky level 3) recognizing regular languages (REG), while rational weights make this model Turing-complete even for three analog-state units (Chomsky level 0). For the intermediate model α\alphaANN of a binary-state NN that is extended with α0\alpha\geq 0 extra analog-state neurons with rational weights, we have established the analog neuron hierarchy 0ANNs \subset 1ANNs \subset 2ANNs \subseteq 3ANNs. The separation 1ANNs \subsetneqq 2ANNs has been witnessed by the non-regular deterministic context-free language (DCFL) L#={0n1nn1}L_\#=\{0^n1^n\mid n\geq 1\} which cannot be recognized by any 1ANN even with real weights, while any DCFL (Chomsky level 2) is accepted by a 2ANN with rational weights. In this paper, we strengthen this separation by showing that any non-regular DCFL cannot be recognized by 1ANNs with real weights, which means (DCFLs \setminus REG) \subset (2ANNs \setminus 1ANNs), implying 1ANNs \cap DCFLs = 0ANNs. For this purpose, we have shown that L#L_\# is the simplest non-regular DCFL by reducing L#L_\# to any language in this class, which is by itself an interesting achievement in computability theory.

View on arXiv
Comments on this paper