ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03503
13
14

Template-Free Try-on Image Synthesis via Semantic-guided Optimization

6 February 2021
Chien-Lung Chou
Chieh-Yun Chen
Chia-Wei Hsieh
Hong-Han Shuai
Jiaying Liu
Wen-Huang Cheng
    3DH
ArXivPDFHTML
Abstract

The virtual try-on task is so attractive that it has drawn considerable attention in the field of computer vision. However, presenting the three-dimensional (3D) physical characteristic (e.g., pleat and shadow) based on a 2D image is very challenging. Although there have been several previous studies on 2D-based virtual try-on work, most 1) required user-specified target poses that are not user-friendly and may not be the best for the target clothing, and 2) failed to address some problematic cases, including facial details, clothing wrinkles and body occlusions. To address these two challenges, in this paper, we propose an innovative template-free try-on image synthesis (TF-TIS) network. The TF-TIS first synthesizes the target pose according to the user-specified in-shop clothing. Afterward, given an in-shop clothing image, a user image, and a synthesized pose, we propose a novel model for synthesizing a human try-on image with the target clothing in the best fitting pose. The qualitative and quantitative experiments both indicate that the proposed TF-TIS outperforms the state-of-the-art methods, especially for difficult cases.

View on arXiv
Comments on this paper