ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03681
10
1

FastAD: Expression Template-Based C++ Library for Fast and Memory-Efficient Automatic Differentiation

6 February 2021
Jie Yang
    VLM
ArXiv (abs)PDFHTML
Abstract

Automatic differentiation is a set of techniques to efficiently and accurately compute the derivative of a function represented by a computer program. Existing C++ libraries for automatic differentiation (e.g. Adept, Stan Math Library), however, exhibit large memory consumptions and runtime performance issues. This paper introduces FastAD, a new C++ template library for automatic differentiation, that overcomes all of these challenges in existing libraries by using vectorization, simpler memory management using a fully expression-template-based design, and other compile-time optimizations to remove some run-time overhead. Benchmarks show that FastAD performs 2-10 times faster than Adept and 2-19 times faster than Stan across various test cases including a few real-world examples.

View on arXiv
Comments on this paper