ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04198
26
57

ICASSP 2021 Deep Noise Suppression Challenge: Decoupling Magnitude and Phase Optimization with a Two-Stage Deep Network

8 February 2021
Andong Li
Wenzhe Liu
Xiaoxue Luo
C. Zheng
Xiaodong Li
ArXivPDFHTML
Abstract

It remains a tough challenge to recover the speech signals contaminated by various noises under real acoustic environments. To this end, we propose a novel system for denoising in the complicated applications, which is mainly comprised of two pipelines, namely a two-stage network and a post-processing module. The first pipeline is proposed to decouple the optimization problem w:r:t: magnitude and phase, i.e., only the magnitude is estimated in the first stage and both of them are further refined in the second stage. The second pipeline aims to further suppress the remaining unnatural distorted noise, which is demonstrated to sufficiently improve the subjective quality. In the ICASSP 2021 Deep Noise Suppression (DNS) Challenge, our submitted system ranked top-1 for the real-time track 1 in terms of Mean Opinion Score (MOS) with ITU-T P.808 framework.

View on arXiv
Comments on this paper