ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.05096
17
3

Towards Bridging the gap between Empirical and Certified Robustness against Adversarial Examples

9 February 2021
Jay Nandy
Sudipan Saha
W. Hsu
M. Lee
Xiaosu Zhu
    AAML
ArXivPDFHTML
Abstract

The current state-of-the-art defense methods against adversarial examples typically focus on improving either empirical or certified robustness. Among them, adversarially trained (AT) models produce empirical state-of-the-art defense against adversarial examples without providing any robustness guarantees for large classifiers or higher-dimensional inputs. In contrast, existing randomized smoothing based models achieve state-of-the-art certified robustness while significantly degrading the empirical robustness against adversarial examples. In this paper, we propose a novel method, called \emph{Certification through Adaptation}, that transforms an AT model into a randomized smoothing classifier during inference to provide certified robustness for ℓ2\ell_2ℓ2​ norm without affecting their empirical robustness against adversarial attacks. We also propose \emph{Auto-Noise} technique that efficiently approximates the appropriate noise levels to flexibly certify the test examples using randomized smoothing technique. Our proposed \emph{Certification through Adaptation} with \emph{Auto-Noise} technique achieves an \textit{average certified radius (ACR) scores} up to 1.1021.1021.102 and 1.1481.1481.148 respectively for CIFAR-10 and ImageNet datasets using AT models without affecting their empirical robustness or benign accuracy. Therefore, our paper is a step towards bridging the gap between the empirical and certified robustness against adversarial examples by achieving both using the same classifier.

View on arXiv
Comments on this paper