ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06278
20
4

Unsupervised Ground Metric Learning using Wasserstein Singular Vectors

11 February 2021
Geert-Jan Huizing
Laura Cantini
Gabriel Peyré
    SSL
    OT
ArXivPDFHTML
Abstract

Defining meaningful distances between samples in a dataset is a fundamental problem in machine learning. Optimal Transport (OT) lifts a distance between features (the "ground metric") to a geometrically meaningful distance between samples. However, there is usually no straightforward choice of ground metric. Supervised ground metric learning approaches exist but require labeled data. In absence of labels, only ad-hoc ground metrics remain. Unsupervised ground metric learning is thus a fundamental problem to enable data-driven applications of OT. In this paper, we propose for the first time a canonical answer by simultaneously computing an OT distance between samples and between features of a dataset. These distance matrices emerge naturally as positive singular vectors of the function mapping ground metrics to OT distances. We provide criteria to ensure the existence and uniqueness of these singular vectors. We then introduce scalable computational methods to approximate them in high-dimensional settings, using stochastic approximation and entropic regularization. Finally, we showcase Wasserstein Singular Vectors on a single-cell RNA-sequencing dataset.

View on arXiv
Comments on this paper