ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06894
25
7

MATCH: An MPI Fault Tolerance Benchmark Suite

13 February 2021
Luanzheng Guo
Giorgis Georgakoudis
K. Parasyris
Ignacio Laguna
Dong Li
ArXiv (abs)PDFHTML
Abstract

MPI has been ubiquitously deployed in flagship HPC systems aiming to accelerate distributed scientific applications running on tens of hundreds of processes and compute nodes. Maintaining the correctness and integrity of MPI application execution is critical, especially for safety-critical scientific applications. Therefore, a collection of effective MPI fault tolerance techniques have been proposed to enable MPI application execution to efficiently resume from system failures. However, there is no structured way to study and compare different MPI fault tolerance designs, so to guide the selection and development of efficient MPI fault tolerance techniques for distinct scenarios. To solve this problem, we design, develop, and evaluate a benchmark suite called MATCH to characterize, research, and comprehensively compare different combinations and configurations of MPI fault tolerance designs. Our investigation derives useful findings: (1) Reinit recovery in general performs better than ULFM recovery; (2) Reinit recovery is independent of the scaling size and the input problem size, whereas ULFM recovery is not; (3) Using Reinit recovery with FTI checkpointing is a highly efficient fault tolerance design. MATCH code is available at https://github.com/kakulo/MPI- FT- Bench.

View on arXiv
Comments on this paper