ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.07539
13
5

Crowdsourcing Parallel Corpus for English-Oromo Neural Machine Translation using Community Engagement Platform

15 February 2021
S. Chala
Bekele Debisa
Amante Diriba
Silas Getachew
Chala Getu
S. Shiferaw
ArXivPDFHTML
Abstract

Even though Afaan Oromo is the most widely spoken language in the Cushitic family by more than fifty million people in the Horn and East Africa, it is surprisingly resource-scarce from a technological point of view. The increasing amount of various useful documents written in English language brings to investigate the machine that can translate those documents and make it easily accessible for local language. The paper deals with implementing a translation of English to Afaan Oromo and vice versa using Neural Machine Translation. But the implementation is not very well explored due to the limited amount and diversity of the corpus. However, using a bilingual corpus of just over 40k sentence pairs we have collected, this study showed a promising result. About a quarter of this corpus is collected via Community Engagement Platform (CEP) that was implemented to enrich the parallel corpus through crowdsourcing translations.

View on arXiv
Comments on this paper