ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08598
119
56

Leveraging Public Data for Practical Private Query Release

17 February 2021
Terrance Liu
G. Vietri
Thomas Steinke
Jonathan R. Ullman
Zhiwei Steven Wu
ArXivPDFHTML
Abstract

In many statistical problems, incorporating priors can significantly improve performance. However, the use of prior knowledge in differentially private query release has remained underexplored, despite such priors commonly being available in the form of public datasets, such as previous US Census releases. With the goal of releasing statistics about a private dataset, we present PMW^Pub, which -- unlike existing baselines -- leverages public data drawn from a related distribution as prior information. We provide a theoretical analysis and an empirical evaluation on the American Community Survey (ACS) and ADULT datasets, which shows that our method outperforms state-of-the-art methods. Furthermore, PMW^Pub scales well to high-dimensional data domains, where running many existing methods would be computationally infeasible.

View on arXiv
Comments on this paper