ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.09057
13
14

Towards Adversarial-Resilient Deep Neural Networks for False Data Injection Attack Detection in Power Grids

17 February 2021
Jiangnan Li
Yingyuan Yang
Jinyuan Stella Sun
K. Tomsovic
Hairong Qi
    AAML
ArXivPDFHTML
Abstract

False data injection attacks (FDIAs) pose a significant security threat to power system state estimation. To detect such attacks, recent studies have proposed machine learning (ML) techniques, particularly deep neural networks (DNNs). However, most of these methods fail to account for the risk posed by adversarial measurements, which can compromise the reliability of DNNs in various ML applications. In this paper, we present a DNN-based FDIA detection approach that is resilient to adversarial attacks. We first analyze several adversarial defense mechanisms used in computer vision and show their inherent limitations in FDIA detection. We then propose an adversarial-resilient DNN detection framework for FDIA that incorporates random input padding in both the training and inference phases. Our simulations, based on an IEEE standard power system, demonstrate that this framework significantly reduces the effectiveness of adversarial attacks while having a negligible impact on the DNNs' detection performance.

View on arXiv
Comments on this paper