ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.09677
11
14

Training a Resilient Q-Network against Observational Interference

18 February 2021
Chao-Han Huck Yang
I-Te Danny Hung
Ouyang Yi
Pin-Yu Chen
    OOD
ArXivPDFHTML
Abstract

Deep reinforcement learning (DRL) has demonstrated impressive performance in various gaming simulators and real-world applications. In practice, however, a DRL agent may receive faulty observation by abrupt interferences such as black-out, frozen-screen, and adversarial perturbation. How to design a resilient DRL algorithm against these rare but mission-critical and safety-crucial scenarios is an essential yet challenging task. In this paper, we consider a deep q-network (DQN) framework training with an auxiliary task of observational interferences such as artificial noises. Inspired by causal inference for observational interference, we propose a causal inference based DQN algorithm called causal inference Q-network (CIQ). We evaluate the performance of CIQ in several benchmark DQN environments with different types of interferences as auxiliary labels. Our experimental results show that the proposed CIQ method could achieve higher performance and more resilience against observational interferences.

View on arXiv
Comments on this paper