ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10551
11
30

Delhi air quality prediction using LSTM deep learning models with a focus on COVID-19 lockdown

21 February 2021
A. Tiwari
Rishabh Gupta
Rohitash Chandra
ArXivPDFHTML
Abstract

Air pollution has a wide range of implications on agriculture, economy, road accidents, and health. In this paper, we use novel deep learning methods for short-term (multi-step-ahead) air-quality prediction in selected parts of Delhi, India. Our deep learning methods comprise of long short-term memory (LSTM) network models which also include some recent versions such as bidirectional-LSTM and encoder-decoder LSTM models. We use a multivariate time series approach that attempts to predict air quality for 10 prediction horizons covering total of 80 hours and provide a long-term (one month ahead) forecast with uncertainties quantified. Our results show that the multivariate bidirectional-LSTM model provides best predictions despite COVID-19 impact on the air-quality during full and partial lockdown periods. The effect of COVID-19 on the air quality has been significant during full lockdown; however, there was unprecedented growth of poor air quality afterwards.

View on arXiv
Comments on this paper