ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10809
11
14

Local Calibration: Metrics and Recalibration

22 February 2021
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
ArXivPDFHTML
Abstract

Probabilistic classifiers output confidence scores along with their predictions, and these confidence scores should be calibrated, i.e., they should reflect the reliability of the prediction. Confidence scores that minimize standard metrics such as the expected calibration error (ECE) accurately measure the reliability on average across the entire population. However, it is in general impossible to measure the reliability of an individual prediction. In this work, we propose the local calibration error (LCE) to span the gap between average and individual reliability. For each individual prediction, the LCE measures the average reliability of a set of similar predictions, where similarity is quantified by a kernel function on a pretrained feature space and by a binning scheme over predicted model confidences. We show theoretically that the LCE can be estimated sample-efficiently from data, and empirically find that it reveals miscalibration modes that are more fine-grained than the ECE can detect. Our key result is a novel local recalibration method LoRe, to improve confidence scores for individual predictions and decrease the LCE. Experimentally, we show that our recalibration method produces more accurate confidence scores, which improves downstream fairness and decision making on classification tasks with both image and tabular data.

View on arXiv
Comments on this paper