ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10859
14
1

Recursive Least Squares Based Refinement Network for the Rollout Trajectory Prediction Methods

22 February 2021
Qifan Xue
Xuanpeng Li
Weigong Zhang
ArXivPDFHTML
Abstract

Trajectory prediction plays a pivotal role in the field of intelligent vehicles. It currently suffers from several challenges,e.g., accumulative error in rollout process and weak adaptability in various scenarios. This paper proposes a parametric-learning recursive least squares (RLS) estimation based on deep neural network for trajectory prediction. We design a flexible plug-in module which can be readily implanted into rollout approaches. Goal points are proposed to capture the long-term prediction stability from the global perspective. We carried experiments out on the NGSIM dataset. The promising results indicate that our method could improve rollout trajectory prediction methods effectively.

View on arXiv
Comments on this paper