ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11500
15
0

Model-Attentive Ensemble Learning for Sequence Modeling

23 February 2021
Victor D. Bourgin
Ioana Bica
M. Schaar
    AI4TS
ArXivPDFHTML
Abstract

Medical time-series datasets have unique characteristics that make prediction tasks challenging. Most notably, patient trajectories often contain longitudinal variations in their input-output relationships, generally referred to as temporal conditional shift. Designing sequence models capable of adapting to such time-varying distributions remains a prevailing problem. To address this we present Model-Attentive Ensemble learning for Sequence modeling (MAES). MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions. We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.

View on arXiv
Comments on this paper