ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11904
13
143

A Review of Generalizability and Transportability

23 February 2021
Irina Degtiar
Sherri Rose
    CML
ArXivPDFHTML
Abstract

When assessing causal effects, determining the target population to which the results are intended to generalize is a critical decision. Randomized and observational studies each have strengths and limitations for estimating causal effects in a target population. Estimates from randomized data may have internal validity but are often not representative of the target population. Observational data may better reflect the target population, and hence be more likely to have external validity, but are subject to potential bias due to unmeasured confounding. While much of the causal inference literature has focused on addressing internal validity bias, both internal and external validity are necessary for unbiased estimates in a target population. This paper presents a framework for addressing external validity bias, including a synthesis of approaches for generalizability and transportability, the assumptions they require, as well as tests for the heterogeneity of treatment effects and differences between study and target populations.

View on arXiv
Comments on this paper