ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12671
41
49

LET: Linguistic Knowledge Enhanced Graph Transformer for Chinese Short Text Matching

25 February 2021
Boer Lyu
Lu Chen
Su Zhu
Kai Yu
ArXivPDFHTML
Abstract

Chinese short text matching is a fundamental task in natural language processing. Existing approaches usually take Chinese characters or words as input tokens. They have two limitations: 1) Some Chinese words are polysemous, and semantic information is not fully utilized. 2) Some models suffer potential issues caused by word segmentation. Here we introduce HowNet as an external knowledge base and propose a Linguistic knowledge Enhanced graph Transformer (LET) to deal with word ambiguity. Additionally, we adopt the word lattice graph as input to maintain multi-granularity information. Our model is also complementary to pre-trained language models. Experimental results on two Chinese datasets show that our models outperform various typical text matching approaches. Ablation study also indicates that both semantic information and multi-granularity information are important for text matching modeling.

View on arXiv
Comments on this paper