ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13187
78
30

CollisionIK: A Per-Instant Pose Optimization Method for Generating Robot Motions with Environment Collision Avoidance

25 February 2021
D. Rakita
Haochen Shi
Bilge Mutlu
Michael Gleicher
ArXivPDFHTML
Abstract

In this work, we present a per-instant pose optimization method that can generate configurations that achieve specified pose or motion objectives as best as possible over a sequence of solutions, while also simultaneously avoiding collisions with static or dynamic obstacles in the environment. We cast our method as a multi-objective, non-linear constrained optimization-based IK problem where each term in the objective function encodes a particular pose objective. We demonstrate how to effectively incorporate environment collision avoidance as a single term in this multi-objective, optimization-based IK structure, and provide solutions for how to spatially represent and organize external environments such that data can be efficiently passed to a real-time, performance-critical optimization loop. We demonstrate the effectiveness of our method by comparing it to various state-of-the-art methods in a testbed of simulation experiments and discuss the implications of our work based on our results.

View on arXiv
Comments on this paper