ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.00674
12
8

BEAUTY Powered BEAST

1 March 2021
Kai Zhang
Zhigen Zhao
Wen-Xin Zhou
ArXivPDFHTML
Abstract

We study distribution-free goodness-of-fit tests with the proposed Binary Expansion Approximation of UniformiTY (BEAUTY) approach. This method generalizes the renowned Euler's formula, and approximates the characteristic function of any copula through a linear combination of expectations of binary interactions from marginal binary expansions. This novel theory enables a unification of many important tests of independence via approximations from specific quadratic forms of symmetry statistics, where the deterministic weight matrix characterizes the power properties of each test. To achieve a robust power, we examine test statistics with data-adaptive weights, referred to as the Binary Expansion Adaptive Symmetry Test (BEAST). Using properties of the binary expansion filtration, we demonstrate that the Neyman-Pearson test of uniformity can be approximated by an oracle weighted sum of symmetry statistics. The BEAST with this oracle provides a useful benchmark of feasible power. To approach this oracle power, we devise the BEAST through a regularized resampling approximation of the oracle test. The BEAST improves the empirical power of many existing tests against a wide spectrum of common alternatives and delivers a clear interpretation of dependency forms when significant.

View on arXiv
Comments on this paper