ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01521
8
6

On the Memory Mechanism of Tensor-Power Recurrent Models

2 March 2021
Hejia Qiu
Chao Li
Ying Weng
Zhun Sun
Xingyu He
Qibin Zhao
ArXivPDFHTML
Abstract

Tensor-power (TP) recurrent model is a family of non-linear dynamical systems, of which the recurrence relation consists of a p-fold (a.k.a., degree-p) tensor product. Despite such the model frequently appears in the advanced recurrent neural networks (RNNs), to this date there is limited study on its memory property, a critical characteristic in sequence tasks. In this work, we conduct a thorough investigation of the memory mechanism of TP recurrent models. Theoretically, we prove that a large degree p is an essential condition to achieve the long memory effect, yet it would lead to unstable dynamical behaviors. Empirically, we tackle this issue by extending the degree p from discrete to a differentiable domain, such that it is efficiently learnable from a variety of datasets. Taken together, the new model is expected to benefit from the long memory effect in a stable manner. We experimentally show that the proposed model achieves competitive performance compared to various advanced RNNs in both the single-cell and seq2seq architectures.

View on arXiv
Comments on this paper