ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03036
10
69

A Survey on Graph Structure Learning: Progress and Opportunities

4 March 2021
Yanqiao Zhu
Weizhi Xu
Jinghao Zhang
Yuanqi Du
Jieyu Zhang
Qiang Liu
Carl Yang
Shu Wu
    GNN
    AI4CE
ArXivPDFHTML
Abstract

Graphs are widely used to describe real-world objects and their interactions. Graph Neural Networks (GNNs) as a de facto model for analyzing graphstructured data, are highly sensitive to the quality of the given graph structures. Therefore, noisy or incomplete graphs often lead to unsatisfactory representations and prevent us from fully understanding the mechanism underlying the system. In pursuit of an optimal graph structure for downstream tasks, recent studies have sparked an effort around the central theme of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding graph representations. In the presented survey, we broadly review recent progress in GSL methods. Specifically, we first formulate a general pipeline of GSL and review state-of-the-art methods classified by the way of modeling graph structures, followed by applications of GSL across domains. Finally, we point out some issues in current studies and discuss future directions.

View on arXiv
Comments on this paper