ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03293
63
22
v1v2 (latest)

Tensor-Free Second-Order Differential Dynamic Programming

4 March 2021
John N. Nganga
Patrick M. Wensing
ArXiv (abs)PDFHTML
Abstract

This paper presents a method to reduce the computational complexity of including second-order dynamics sensitivity information into the Differential Dynamic Programming (DDP) trajectory optimization algorithm. A tensor-free approach to DDP is developed where all the necessary derivatives are computed with the same complexity as in the iterative Linear Quadratic Regulator~(iLQR). Compared to linearized models used in iLQR, DDP more accurately represents the dynamics locally, but it is not often used since the second-order derivatives of the dynamics are tensorial and expensive to compute. This work shows how to avoid the need for computing the derivative tensor by instead leveraging reverse-mode accumulation of derivative information to compute a key vector-tensor product directly. We benchmark this approach for trajectory optimization with multi-link manipulators and show that the benefits of DDP can often be included without sacrificing evaluation time, and can be done in fewer iterations than iLQR.

View on arXiv
Comments on this paper