ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.04812
6
13

Reliability-Aware Quantization for Anti-Aging NPUs

8 March 2021
Sami Salamin
Georgios Zervakis
Ourania Spantidi
Iraklis Anagnostopoulos
J. Henkel
H. Amrouch
ArXivPDFHTML
Abstract

Transistor aging is one of the major concerns that challenges designers in advanced technologies. It profoundly degrades the reliability of circuits during its lifetime as it slows down transistors resulting in errors due to timing violations unless large guardbands are included, which leads to considerable performance losses. When it comes to Neural Processing Units (NPUs), where increasing the inference speed is the primary goal, such performance losses cannot be tolerated. In this work, we are the first to propose a reliability-aware quantization to eliminate aging effects in NPUs while completely removing guardbands. Our technique delivers a graceful inference accuracy degradation over time while compensating for the aging-induced delay increase of the NPU. Our evaluation, over ten state-of-the-art neural network architectures trained on the ImageNet dataset, demonstrates that for an entire lifetime of 10 years, the average accuracy loss is merely 3%. In the meantime, our technique achieves 23% higher performance due to the elimination of the aging guardband.

View on arXiv
Comments on this paper