ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.05342
9
29

Cut-Thumbnail: A Novel Data Augmentation for Convolutional Neural Network

9 March 2021
Tianshu Xie
Xuan Cheng
Minghui Liu
Jiali Deng
Xiaomin Wang
Ming Liu
ArXivPDFHTML
Abstract

In this paper, we propose a novel data augmentation strategy named Cut-Thumbnail, that aims to improve the shape bias of the network. We reduce an image to a certain size and replace the random region of the original image with the reduced image. The generated image not only retains most of the original image information but also has global information in the reduced image. We call the reduced image as thumbnail. Furthermore, we find that the idea of thumbnail can be perfectly integrated with Mixed Sample Data Augmentation, so we put one image's thumbnail on another image while the ground truth labels are also mixed, making great achievements on various computer vision tasks. Extensive experiments show that Cut-Thumbnail works better than state-of-the-art augmentation strategies across classification, fine-grained image classification, and object detection. On ImageNet classification, ResNet-50 architecture with our method achieves 79.21\% accuracy, which is more than 2.8\% improvement on the baseline.

View on arXiv
Comments on this paper