ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.05908
32
7

DeepCPCFG: Deep Learning and Context Free Grammars for End-to-End Information Extraction

10 March 2021
Freddy Chongtat Chua
Nigel P. Duffy
ArXivPDFHTML
Abstract

We address the challenge of extracting structured information from business documents without detailed annotations. We propose Deep Conditional Probabilistic Context Free Grammars (DeepCPCFG) to parse two-dimensional complex documents and use Recursive Neural Networks to create an end-to-end system for finding the most probable parse that represents the structured information to be extracted. This system is trained end-to-end with scanned documents as input and only relational-records as labels. The relational-records are extracted from existing databases avoiding the cost of annotating documents by hand. We apply this approach to extract information from scanned invoices achieving state-of-the-art results despite using no hand-annotations.

View on arXiv
Comments on this paper