We address the challenge of extracting structured information from business documents without detailed annotations. We propose Deep Conditional Probabilistic Context Free Grammars (DeepCPCFG) to parse two-dimensional complex documents and use Recursive Neural Networks to create an end-to-end system for finding the most probable parse that represents the structured information to be extracted. This system is trained end-to-end with scanned documents as input and only relational-records as labels. The relational-records are extracted from existing databases avoiding the cost of annotating documents by hand. We apply this approach to extract information from scanned invoices achieving state-of-the-art results despite using no hand-annotations.
View on arXiv