ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.05923
17
5

Improving Sequential Recommendation with Attribute-augmented Graph Neural Networks

10 March 2021
Xinzhou Dong
Beihong Jin
Wei Zhuo
Beibei Li
Taofeng Xue
ArXivPDFHTML
Abstract

Many practical recommender systems provide item recommendation for different users only via mining user-item interactions but totally ignoring the rich attribute information of items that users interact with. In this paper, we propose an attribute-augmented graph neural network model named Murzim. Murzim takes as input the graphs constructed from the user-item interaction sequences and corresponding item attribute sequences. By combining the GNNs with node aggregation and an attention network, Murzim can capture user preference patterns, generate embeddings for user-item interaction sequences, and then generate recommendations through next-item prediction. We conduct extensive experiments on multiple datasets. Experimental results show that Murzim outperforms several state-of-the-art methods in terms of recall and MRR, which illustrates that Murzim can make use of item attribute information to produce better recommendations. At present, Murzim has been deployed in MX Player, one of India's largest streaming platforms, and is recommending videos for tens of thousands of users.

View on arXiv
Comments on this paper